Enhanced Support Recovery for PMU Measurements Based on Taylor–Fourier Compressive Sensing Approach

نویسندگان

چکیده

Modern distribution networks are characterized by higher distortion and faster variability of voltages currents. Accurate synchrophasor, frequency ROCOF measurements thus ask for new techniques trying to reduce latency while limiting the impact spurious components. In this respect, Taylor-Fourier Multifrequency approach is a good candidate Phasor Measurement Units intended system applications. present paper, we propose an enhanced version based on joint application window functions iterative support refinement means phasor first order derivative. The performance algorithm thoroughly through extensive numerical simulation non-standard test conditions that reproduce challenges real-world scenarios, with fundamental dynamics superimposed interfering tones. reported results confirm spectral recovery, resulting in remarkable improvement estimation accuracy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive sensing based beamforming for noisy measurements

Compressive sensing is the newly emerging method in information technology that could impact array beamforming and the associated engineering applications. However, practical measurements are inevitably polluted by noise from external interference and internal acquisition process. Then, compressive sensing based beamforming was studied in this work for those noisy measurements with a signal-to-...

متن کامل

Observability-Enhanced PMU Placement Considering Conventional Measurements and Contingencies

Phasor Measurement Units (PMUs) are in growing attention in recent power systems because of their paramount abilities in state estimation. PMUs are placed in existing power systems where there are already installed conventional measurements, which can be helpful if they are considered in PMU optimal placement. In this paper, a method is proposed for optimal placement of PMUs incorporating conve...

متن کامل

Robust ISAR imaging based on compressive sensing from noisy measurements

the compressive sensing (CS) based ISAR imaging has exhibited high-resolution imaging quality when faced with limited spatial aperture. However, its performance is significantly dependent on the number of pulses and the noise level. In this paper, from the perspective of promoted sparsity constraint, a novel reconstruction model deducted from Meridian prior (MCS) is proposed. The detailed compa...

متن کامل

Backtracking-Based Iterative Regularization Method for Image Compressive Sensing Recovery

This paper presents a variant of the iterative shrinkage-thresholding (IST) algorithm, called backtracking-based adaptive IST (BAIST), for image compressive sensing (CS) reconstruction. For increasing iterations, IST usually yields a smoothing of the solution and runs into prematurity. To add back more details, the BAIST method backtracks to the previous noisy image using L2 norm minimization, ...

متن کامل

Hierarchical Recovery in Compressive Sensing

A combinatorial approach to compressive sensing based on a deterministic column replacement technique is proposed. Informally, it takes as input a pattern matrix and ingredient measurement matrices, and results in a larger measurement matrix by replacing elements of the pattern matrix with columns from the ingredient matrices. This hierarchical technique yields great flexibility in sparse signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Instrumentation and Measurement

سال: 2022

ISSN: ['1557-9662', '0018-9456']

DOI: https://doi.org/10.1109/tim.2022.3176275